Floyd R Turbo
Either busy or sleeping
Cutting the Slot
The width of the slot should be approximately 1/8" wide, the same length as the screen which you are using (as exact as possible), and as straight as possible. Cutting a straight, even width slot is arguably the most difficult and critical part of building an Algae Scrubber. If the slot is crooked or uneven, the screen may not hang properly, and there may be areas where the flow is lighter and heavier. This can result in sections of weak growth.
The width of 1/8" is what works best for a screen that has about 35 GPH of flow per inch of slot length. This flow rate is the minimum "˜target' flow rate you want to have. At this rate, the water will "˜pile up' in the pipe and purge the air out, and the water drain out fairly evenly across the entire screen.
Cutting the slot too narrow will result in low and uneven flow across the screen, resulting in areas of low growth. If you feed the scrubber via the overflow, this can cause big problems. Water can only flow so fast through a certain opening, and while this flow will increase with pressure, there is still a limit.
Cutting the slot too wide can also result in problems. If the slot is too wide for the total flow, then the air does not purge from the pipe as easily, resulting in the water "˜shooting' through the pipe and dumping out on the far end. The only reason to widen a pipe is when you want a greater flow rate per linear inch of slot. It doesn't take much of an increase in width to allow a significant increase in flow. If you think about it, the 35 GPH/in slot is 1/8", and half of that is take up by the screen, which means 35GPH/in flows through a slot that is essentially 1/16", maybe 3/32" if you don't count the screen as completely blocking half the flow (since it is mesh after all). So increasing the slot width by 1/16" can likely allow double the flow. For your Algae Scrubber to be successful with a wider slot, the screen really needs to be rough enough, so just pay attention to that when roughing up your screen for a high-flow setup.
However you go about this, you might need a few tries to get good at it. PVC is cheap, so practice on a small section so you get used to how this is done. It's going to take a little time and patience "“ don't rush it. Mark the slot, and cut carefully. If you mess up, do it again. Once you solvent weld an end cap and a union to it, it is not as cheap to replace (but still relatively cheap).
Doing it right means using a power tool.
You could use a Dremel with a cutoff wheel
An Oscillating tool:
A roto-zip (and a guide jig) or a router
Plastics like PVC are "˜grabby', and using a roto-zip or router takes extra precautions - so this is not for the inexperienced, but it makes very straight slots. With the right jig setup, you could also use a handheld circular saw, but then you are lowering a spinning blade onto the PVC (if you're cutting the slot in the middle and leaving the ends uncut).
One of the best ways to cut a perfectly slot straight is by using a table saw. However, there really is no way to cut a slot in the middle of a section of pipe (or across the whole length of one side of a pipe) without removing the anti-kickback device and lowering the pipe on to the spinning blade. I have successfully done this, and it is definitely not for the person who is not fully respectful of power equipment and comfortable with the above mentioned method (or any of the other methods, for that matter)
However you decide to cut the slot in the pipe, remember to observe all necessary safety precautions. Either that, or have someone else do it for you.
I read a post from one person who reported that they had their table saw grab the piece of PVC pipe while cutting the slot and shoot it across the room. Turns out he had the blade too high and the pipe rotated on him as he wasn't using a fence of any kind to guide the pipe. Be smart and careful.
Screening Material
The search for the "perfect material" for growing algae in the vertical waterfall configuration has always come back to the same material, the Clear #7 Mesh Plastic Canvas. This can be found at almost any fabric (Jo-Ann Fabric) or craft-type hobby store (Michaels), usually in the knitting materials section. I have seen it at Wal-Mart, next to all the yarn. If you google "œplastic canvas" you'll find hundreds of links. You can feel free to experiment, but this material has been proven to work over and over again.
The reason that it works so well is because it is cheap, flexible, light, and easy to rough up. It is also translucent, which is critical. As algae grow thicker on a screen, the outer layer starts to block light to the lower layers. This causes weakening of the algae at the point of adhesion to the screen material. Allowing light to penetrate to the base of the screen from both sides helps to prevent the lower layers from weakening and detaching from the screen. Any material that blocks light is fundamentally inferior, all other things being equal. This also means don't use any of the colored screening materials that you will see.
A brand new screen is slick and smooth. Except for the top edge of the screen, it needs to be roughed up so that the algae has anchoring points. This is a critical step and it absolutely must be done properly. Once the screen is established, algae can grow very thick, it can hold a significant amount of water, and it will get heavy. I have seen pictures of screens that weigh several pounds. This weight is distributed across the screen, and with a rough base, it will hold very well.
To rough the screen up, the best thing to use is a bi-metal hole saw. These saws have teeth that protrude out to a sharp point, and are great for tearing up the screen
As the above picture shows, you need to drag is back and forth across the screen. I suggest you sit in the garage or outside with a cutting board on your lap and lay the canvas on that. When you start roughing the screen, do a lot of random movements. Don't concentrate on one spot for very long or you'll wear through the screen and tear it. Rotate the screen often. You can also tilt the saw bit as you drag it so that the teeth won't snag the screen. You should get a good heaping tablespoon of plastic from each side of a 10x10 screen.
After it's all done, your screen should look like this:
Give the screen a good rinse and a light scrub with an old toothbrush to clear off all the pieces that are "˜hanging by a string'. These pieces are inert plastic, but still, you don't really want these floating around in your aquarium.
Though I haven't used one myself, I have heard that a rasp (available at any hardware store) is also great for roughing up this material. There are handheld rasps (similar to a Ped-Egg for your feet, except much sharper), and there are bit-mounted rasps (for power drills). It looks like it could be a little easier to tear the screen with this tool, but there is much less elbow grease involved. The drill bit rasps I have seen don't appear to have protrusions large enough to "œdig" into the screen and result in a cactus-rough surface.
Some have tried other methods of roughing up the screen. 80 grit sandpaper will definitely rough up the screen, but it doesn't leave it "˜prickly', so it's not very effective. Recently, someone put a screen in the oven for a few minutes, then sprinkled it with aragonite sand and pressed it on. It was a neat idea, but it blocked the light from penetrating to the base from both sides, so it didn't do very well.
The bottom line here is that there really is no shortcut. You only have to rough up the screen once, so stick to the tried and true method, unless you feel like experimenting on your aquarium.
As previously mentioned, the top edge of the screen (where it is inserted into the slot pipe) should not be roughed up at all, or else algae can easily grow into the slot and restrict the flow. The amount of material you leave smooth depends on your design, mainly, how far you plan on inserting the screen into the slot pipe. Regardless of this measurement, the smooth section should extend at least 1/8" down below the slot.
The width of the slot should be approximately 1/8" wide, the same length as the screen which you are using (as exact as possible), and as straight as possible. Cutting a straight, even width slot is arguably the most difficult and critical part of building an Algae Scrubber. If the slot is crooked or uneven, the screen may not hang properly, and there may be areas where the flow is lighter and heavier. This can result in sections of weak growth.
The width of 1/8" is what works best for a screen that has about 35 GPH of flow per inch of slot length. This flow rate is the minimum "˜target' flow rate you want to have. At this rate, the water will "˜pile up' in the pipe and purge the air out, and the water drain out fairly evenly across the entire screen.
Cutting the slot too narrow will result in low and uneven flow across the screen, resulting in areas of low growth. If you feed the scrubber via the overflow, this can cause big problems. Water can only flow so fast through a certain opening, and while this flow will increase with pressure, there is still a limit.
Cutting the slot too wide can also result in problems. If the slot is too wide for the total flow, then the air does not purge from the pipe as easily, resulting in the water "˜shooting' through the pipe and dumping out on the far end. The only reason to widen a pipe is when you want a greater flow rate per linear inch of slot. It doesn't take much of an increase in width to allow a significant increase in flow. If you think about it, the 35 GPH/in slot is 1/8", and half of that is take up by the screen, which means 35GPH/in flows through a slot that is essentially 1/16", maybe 3/32" if you don't count the screen as completely blocking half the flow (since it is mesh after all). So increasing the slot width by 1/16" can likely allow double the flow. For your Algae Scrubber to be successful with a wider slot, the screen really needs to be rough enough, so just pay attention to that when roughing up your screen for a high-flow setup.
However you go about this, you might need a few tries to get good at it. PVC is cheap, so practice on a small section so you get used to how this is done. It's going to take a little time and patience "“ don't rush it. Mark the slot, and cut carefully. If you mess up, do it again. Once you solvent weld an end cap and a union to it, it is not as cheap to replace (but still relatively cheap).
Doing it right means using a power tool.
You could use a Dremel with a cutoff wheel
An Oscillating tool:
A roto-zip (and a guide jig) or a router
Plastics like PVC are "˜grabby', and using a roto-zip or router takes extra precautions - so this is not for the inexperienced, but it makes very straight slots. With the right jig setup, you could also use a handheld circular saw, but then you are lowering a spinning blade onto the PVC (if you're cutting the slot in the middle and leaving the ends uncut).
One of the best ways to cut a perfectly slot straight is by using a table saw. However, there really is no way to cut a slot in the middle of a section of pipe (or across the whole length of one side of a pipe) without removing the anti-kickback device and lowering the pipe on to the spinning blade. I have successfully done this, and it is definitely not for the person who is not fully respectful of power equipment and comfortable with the above mentioned method (or any of the other methods, for that matter)
However you decide to cut the slot in the pipe, remember to observe all necessary safety precautions. Either that, or have someone else do it for you.
I read a post from one person who reported that they had their table saw grab the piece of PVC pipe while cutting the slot and shoot it across the room. Turns out he had the blade too high and the pipe rotated on him as he wasn't using a fence of any kind to guide the pipe. Be smart and careful.
Screening Material
The search for the "perfect material" for growing algae in the vertical waterfall configuration has always come back to the same material, the Clear #7 Mesh Plastic Canvas. This can be found at almost any fabric (Jo-Ann Fabric) or craft-type hobby store (Michaels), usually in the knitting materials section. I have seen it at Wal-Mart, next to all the yarn. If you google "œplastic canvas" you'll find hundreds of links. You can feel free to experiment, but this material has been proven to work over and over again.
The reason that it works so well is because it is cheap, flexible, light, and easy to rough up. It is also translucent, which is critical. As algae grow thicker on a screen, the outer layer starts to block light to the lower layers. This causes weakening of the algae at the point of adhesion to the screen material. Allowing light to penetrate to the base of the screen from both sides helps to prevent the lower layers from weakening and detaching from the screen. Any material that blocks light is fundamentally inferior, all other things being equal. This also means don't use any of the colored screening materials that you will see.
A brand new screen is slick and smooth. Except for the top edge of the screen, it needs to be roughed up so that the algae has anchoring points. This is a critical step and it absolutely must be done properly. Once the screen is established, algae can grow very thick, it can hold a significant amount of water, and it will get heavy. I have seen pictures of screens that weigh several pounds. This weight is distributed across the screen, and with a rough base, it will hold very well.
To rough the screen up, the best thing to use is a bi-metal hole saw. These saws have teeth that protrude out to a sharp point, and are great for tearing up the screen
As the above picture shows, you need to drag is back and forth across the screen. I suggest you sit in the garage or outside with a cutting board on your lap and lay the canvas on that. When you start roughing the screen, do a lot of random movements. Don't concentrate on one spot for very long or you'll wear through the screen and tear it. Rotate the screen often. You can also tilt the saw bit as you drag it so that the teeth won't snag the screen. You should get a good heaping tablespoon of plastic from each side of a 10x10 screen.
After it's all done, your screen should look like this:
Give the screen a good rinse and a light scrub with an old toothbrush to clear off all the pieces that are "˜hanging by a string'. These pieces are inert plastic, but still, you don't really want these floating around in your aquarium.
Though I haven't used one myself, I have heard that a rasp (available at any hardware store) is also great for roughing up this material. There are handheld rasps (similar to a Ped-Egg for your feet, except much sharper), and there are bit-mounted rasps (for power drills). It looks like it could be a little easier to tear the screen with this tool, but there is much less elbow grease involved. The drill bit rasps I have seen don't appear to have protrusions large enough to "œdig" into the screen and result in a cactus-rough surface.
Some have tried other methods of roughing up the screen. 80 grit sandpaper will definitely rough up the screen, but it doesn't leave it "˜prickly', so it's not very effective. Recently, someone put a screen in the oven for a few minutes, then sprinkled it with aragonite sand and pressed it on. It was a neat idea, but it blocked the light from penetrating to the base from both sides, so it didn't do very well.
The bottom line here is that there really is no shortcut. You only have to rough up the screen once, so stick to the tried and true method, unless you feel like experimenting on your aquarium.
As previously mentioned, the top edge of the screen (where it is inserted into the slot pipe) should not be roughed up at all, or else algae can easily grow into the slot and restrict the flow. The amount of material you leave smooth depends on your design, mainly, how far you plan on inserting the screen into the slot pipe. Regardless of this measurement, the smooth section should extend at least 1/8" down below the slot.