Salt mixes generally do not really have enough phosphate to be concerned with. The amount that is there is coming as an impurity in other compounds, not something that is intentionally added. It is a cost issue to drive it lower and lower.
But suppose it is 0.05 ppm in a salt mix and you do a 10% change. Even if the tank had 0.000 ppm phosphate to start, it only got boosted to 0.005 ppm. That is much less phosphate than is added every day from foods.
I discuss those issues here:
Aquarium Chemistry: Phosphate And Math: Yes You Need To Understand Both
http://www.advancedaquarist.com/2012/3/chemistry
from it:
omparison of Food Sources of Phosphate to Other Sources
What about other sources of phosphate, like the "crappy" RO/DI water containing 0.05 ppm phosphate? A similar analysis will show it equally unimportant relative to foods.
Let's assume that the aquarist in question adds 1% of the total tank volume each day with RO/DI to replace evaporation. Simple math shows that the 0.05 ppm in the RO/DI becomes 0.0005 ppm added each day to the phosphate concentration in the aquarium. That dilution step is critical, taking a scary number like 0.05 ppm down to an almost meaningless 0.0005 ppm daily addition. Since that 0.0005 ppm is 40-600 times lower than the amount added each day in foods (Table 4), it does not seem worthy of the angst many aquarists put on such measurements. That said, tap water could have as much as 5 ppm phosphate, and that value could then become a dominating source of phosphate and would be quite problematic. Purifying tap water is important for this and many other reasons.
The same sort of calculation applies to analyzing other phosphate issues, such as the GAC in scenario three. The issue of finding "high" phosphate in GAC soaked in fresh water was frequently quoted as a reason to use one or the other brand of GAC, and probably still is. But simple analysis as shown above for the food rinsing puts the lie to this being a big problem.
One needs to consider how much GAC one will really use in the aquarium and how often it is added in order to interpret how important the added phosphate is. A typical recommendation might be 1 cup of GAC per 100 gallons of aquarium water, and to change it in 4-6 weeks. Let's assume we detect 0.5 ppm phosphate when a teaspoon is placed in a cup of water, and we get scared by the dark blue color during the test. Is this reasonable? That 0.5 ppm from a teaspoon in a cup of water translates to 0.015 ppm phosphate when a cup is used in 100 gallons.
That 0.015 ppm may be significant, being a typical target concentration level for reef aquaria and amounting to about half to a twentieth of the amount added daily in foods, but remember, it is used for 4-6 weeks. During those 4-6 weeks before the next replacement, foods add 50-700 times as much phosphate. So while it is not unreasonable to look for another brand of GAC, to blame phosphate or algae issues in the aquarium on its use would stretch credibility because it is a very tiny portion of the total phosphate being added.