Here is an excerpt from Bob Goemans online book,
THE LIVING AQUARIUM MANUAL, regarding Chloroquine Phosphate and updates to his previous articles on the dosage...
"...As with all five maladies mentioned above, a decision must be made where the affected fish can be treated along with the impact the medications will have on system filtration. It now appears these medications can be considered 'outdated' and fish treated quite successfully in either fish-only or possibly reef aquariums with an alternative product, with no harm to filtration bacteria! This product is called 'Chloroquine phosphate' or Aralen®. Similar to quinine hydrochloride, chloroquine is an antimalarial drug, and also like quinine, has similar effectiveness in the eradication of protozoan parasites and got first attention when it was mentioned in the book
Fish Disease, Diagnosis and Treatment (Noga, 2000).
Some public aquariums have been using and recommending the use of chloroquine for quite some time now with very positive results, as indicated by the discussions on the Aquatic Info Serve, which is an information exchange service for public and professional aquarists, hosted by the New England Aquarium and moderated by Brian Nelson. In fact, in a personal discussion with Lance Ichinotsubo, Michael Stafford, a doctor of veterinary medicine and the consulting veterinarian for the American National Fish and Wildlife Zooquarium in Springfield, Missouri, highly recommended chloroquine for the treatment of Cryptocaryon and Brooklynella. He also indicated that copper and formalin medications are now considered passé in his opinion, in as much as they have become somewhat outdated and archaic. In fact, chloroquine has proven to be very effective, while much safer and less toxic than other traditional treatments of the past. And since it remains very stable in solution and only requires one dose every five days, it simplifies the procedure greatly, eliminating the need for daily testing and treating, such as what is required with other medications, e.g., copper.
Further research led to finding some public aquariums experimenting with it and having very good success treating the above-mentioned maladies, including Uronema. Early experiments with the product showed that while much safer and less toxic than other traditional treatments of the past, it did have a negative effect on alga. Therefore, aquarium alga and invertebrates containing zooxanthellae were at risk, which were witnessed firsthand in some early experiments, where some soft and stony corals perished (L. Ichinotsubo, pers. com.). Nevertheless, Richard Terrell of the Pittsburgh Zoo Aquarium & PPG Aquarium has reported using chloroquine-dosed gel foods to halt an outbreak of Cryptocaryon in a giant clam exhibit, with excellent results and credits Robyn Doege of the Dallas World Aquarium for providing the information.
In a preparation of the gel food that is made at the aquarium, Rich states: "
I used our Metronidazole gel recipe to arrive at an approximation for the Chloroquine. Metro is mixed at 625mg/100g gel diet to yield 25mg/Kg body weight. Chloroquine is supposed to be 50mg/Kg. So I added 3.7g of Chloroquine phosphate to 300g gel powder. Then I added hot water to make the consistency I want. I estimated about 100-125g of fish in the exhibit. Figuring a little less than one part gel powder and medication mixture per one part water by weight, I arrived at about 4 g of gel food per feed. For the garlic gel I mixed about a third of one container of garlic powder into roughly 300g gel powder. Then I added hot water and mixed."
Additionally, in a follow-up discussion with Rich, he offered the following information: "
I just wanted to pass on an update to the Crypt outbreak in our giant clam exhibit. We started feeding Chloroquine gel food every third day on July 3. We also started garlic gel on the off days from the Chloroquine gel. I have done two 30% water changes with hydro-cleaning in that time period. The fish have mostly cleared of their infestation. The lone exception is a flame hawkfish (Neocirrhites armatus) which looks better but is still a bit pale in color and just looks a bit off. But he is still active and feeding. And the treatment is supposed to continue for another 2 weeks. The only adverse reaction I have seen is a hammer coral that is directly below the usual food introduction spot. Half of it showed RTN-like symptoms. We immediately started feeding on the opposite side of the tank and added..." (a chemical filter media/Poly-Filter) ..." to the system to remove any dissolved Chloroquine. The remainder of the coral looks healthy at this point as do the Discosoma, Rhodactis and Tridacna."
I must say, this method of introducing chloroquine to fish in a living reef aquarium, which otherwise could not be treated, looks very promising. It represents an idea on the cutting edge of new and creative thinking. Such innovation and creativity is what continues to improve our ability to keep fish in captivity healthier and happier for a long time. Furthermore, the door has opened to a medication that is proving to be much more effective than copper or formalin.
As to availability, Lance has purchased it in the form of bulk crystalline powder from Spectrum Chemicals, located in Gardena, California, and also from Fishman Chemicals in Marathon, Florida. Lance goes on to say that many of the public aquariums that use chloroquine obtain it from Sigma-Aldrich, another chemical supplier located in St. Louis, Missouri. Alfa Chemicals in Kings Point, New York also advertises themselves as suppliers of this drug. Also, there are a few distributors in Europe, such as Applichem and Chemos GmBH in Germany, as well as many in China, such as Betapharma Shanghai Inc. Co., in Shanghai; Kinbester Co., Ltd. in Xiamen; and, Lemman Laboratories International Co., Ltd., located in Hangzhou. Of course, there are many others as well, too many to mention here. Since it does not appear that any special permits or licenses are required to procure this chemical, it should not be a problem acquiring the chemical directly, without consulting a veterinarian.
We, i.e., Lance and I, recommend the bulk crystalline powder form over the chloroquine phosphate USP tablets since it is easier to measure and administer. Keep in mind a gram scale is required to properly measure the appropriate quantity. If tablet usage is the way you'll go, then you will need to crush them, preferably with a mortar with a pestle. In most cases, 250 mg tablets have an equivalence of 150 mg chloroquine base, and 500 mg tablets have an equivalence of 300 mg chloroquine base. Although the purity mentioned above is generally accurate, it would be best to verify the chloroquine base contained in the tablets of your choice in order to be able to properly calculate the exact dosage. Keep in mind if you decide to use the tablets, there are some inactive ingredients, which you may have to deal with, e.g., Camauba Wax, Colloidal Silicon Dioxide, Dibasic Calcium Phosphate, Hydroxypropyl Methylcellulose, Magnesium Stearate, Microcrystalline Cellulose, Polyethylene Glycol, Polysorbate 80, Pregelatinized Starch, Sodium Starch Glycolate, Stearic Acid, and Titanium Dioxide. And as mentioned earlier in this chapter there are occasions where some medicines are not in their pure form (100% pure), i.e., mixed with a substance called a 'carrier,' which should be noted on its label. If so its potency is reduced, and if not sure about the exact amount of medication needed, suggest contacting a more experienced aquarist for the way to resolve this situation. Keep in mind; by dissolving 10 mg of pure chloroquine power into one liter of water, it yields a 10 ppm dosage. That is equivalent to 38.5 mg per gallon, or almost 40 mg per gallon, as Noga indicates.
As with most medications, suggest removing any activated carbon from the filter system since it will remove the medication from solution. Also suggest turning off your protein skimmer during the course of treatment, as experience indicates it too may remove the medication to some degree. Also, if ultraviolet sterilization and/or ozone are being employed, turn them off also during treatment since they have shown the ability to denature or even destroy chemical compounds. Worse than that, they can even create free radicals and other toxic compounds, which would be contraindicative of the purpose. Although it remains unsubstantiated these actions are necessary, believe that the prudent thing to do would be not taking any chances of lowering the efficacy of the medication.
In trials using this medication there have been excellent results in treating flagellated and ciliated protozoans and further want to say that the medication does not seem to have any detrimental effects on biological filters, as it is not a true antibiotic. Nevertheless, as previously mentioned it seems to be extremely toxic to algae in aquariums. This fact was clearly noted by the disappearance of all nuisance algae in some treated systems! It could be that chloroquine limits the availability of iron to the algae, inhibiting its intracellular multiplication, yet that's still not a clarified position.
As to this seemingly toxicity to algae (remember that zooxanthellae is an alga), it has demonstrated negative effects on some stony and soft corals, many of which quickly perished in some test systems (L. Ichinotsubo, per. com.). It could then be assumed this chemical is having deleterious effects on all organisms containing symbiotic algae within their tissues, such as Tridacna Clams. Then again, the mechanism could be totally unrelated; nevertheless, more research will need to be accomplished to know for sure. To reiterate, it should be understood that chloroquine is not safe for use in reef aquariums, and it would be best to remove fish from reef aquariums and treat them in a quarantine or hospital aquarium.
Even since writing about its usage in "
The Marine Fish Health and Feeding Handbook" (TFH/Microcosm, 2007) and several magazines since then, I've personally tracked its usage as discussed in associated Q&A sessions with interested readers. Even though initial and on-going dosages have varied over the last few years, it now seems the initial dose should be 15 ppm/l, (60 ppm/gal) with 3 additional treatments of 10 ppm/l every 7 to 10 days, with a 10 - 15% water change just prior to additional doses. One further point of information has arisen, and that in some treated aquariums some fish species seem to lose their appetite. In those cases, which have been few, suggested increasing water changes by 50%, i.e., 15 - 25%, and even somewhat further if still not effective. Furthermore, when treating with chloroquine, the use of hyposalinity seems redundant, as its just another task to be implemented and maintained properly. And since past chloroquine usages/experiences without the use of hyposalinity have shown excellent results, it seems that hyposalinity is not needed to assist with the recovery. Nevertheless, the jury is still out on that, so to speak. So make your own decisions on this aspect.
And once the treatment has ended, performing a water change of at least 50% (more if deemed necessary) to remove any metabolites or degraded chemical, which may be in solution, is recommended. Also, since phosphate is part of the compound's formula, the use of this compound will tend to increase the concentration of this undesirable algae nutrient, if by no other reason than default. Besides a water change, the use of phosphate-removing media may be required after the treatment has ended. And as with most chemicals, activated carbon should be placed back in the filter to remove the remaining drug from solution, and to fully terminate the treatment.
Furthermore, as good words spread about this medication, there is now a chloroquine phosphate impregnated food available! If that and an Anti-Bacterial food product may be of interest, research Dr. G's fish foods at
www.drgsmarineaquaculture.com for more information."