The various forms of iodine have very different chemical properties, and they should not be confused with each other. In addition to the three forms mentioned above, aquarists also frequently encounter molecular iodine (I2). Lugols’ solution, for example, contains a mixture of I2 and I-. It is the I2 form in particular that is the basis for the widespread belief that iodine is “toxic.” The I2 form, and that form in combination with other forms, it is a potent antibacterial agent that has long been used for disinfection. The naturally occurring inorganic forms (iodide and iodate) have little in the way of antimicrobial activity.12 Even a 30,000 ppm solution of iodide (240 mM or half a million times more concentrated than in normal seawater) is only weakly antibacterial13 In mixtures containing I2 and other forms, it is the amount of free I2 that is important for antimicrobial activity.14
In terms of toxicity to higher organisms, the concerns vary considerably from organism to organism. Still, these general trends seem to hold. Rainbow trout, for example, are quite sensitive to I2, with the LC50 (the concentration where half of them die) below 1 ppm iodine. They are not very sensitive to I- or IO3-, with the LC50 for these species being greater than 200 and 850 ppm respectively.15,16 Daphnia magna were equally sensitive to I2 (LC50 less than 0.2 ppm) and I- (LC50 less than 0.2 ppm), but were less sensitive to IO3- (LC50 above 10 ppm ) .15
Unfortunately, there is not very much toxicity data available for any of these iodine species on marine organisms. Aquarists are left not knowing exactly how high the iodide and iodate levels can get before becoming problematic. Phytoplankton growth is apparently not inhibited at iodate levels up to 1.3 ppm iodine (iodide, which they made from the iodate was also presumably high).17 These authors concluded “there is little interaction between iodine processing and the metabolic activity of cell growth.” Several species of phytoplankton were shown to be uninhibited by iodide and iodate at greater than 12 ppm, though iodide (but not iodate) began to inhibit one species (C. antiqua) at levels below about 0.13 ppm.18