In a long winded thread about quarantine of live rock and ich on fish in the wild, I came across this peer reviewed article. For certain, @Paul B after 50 years of success
“Now has a detailed scientific explanation on why his method of no quarantine works”.
“Researchers from Oregon State University in Corvallis and California State University in Fullerton led the most recent foray into unexplored reservoirs of bacteria, concentrating their attention on the protective slime, or mucus, that coats fish.
The researchers recently presented their findings at the American Chemical Society Spring 2019 National Meeting & Exposition.”
One of the researchers, Molly Austin, explains that fish mucus is particularly interesting because fish are in constant contact with a complex environment that is dense with potential microbial enemies.
As the authors write, “fish cohabitate with a multitude of bacteria and viruses but often resist deadly infections.” It is worth finding out whether fish’s protective mechanisms might also protect humans.
The marine environment remains relatively unstudied, according to the principal investigator Sandra Loesgen, Ph.D., “For us, any microbe in the marine environment that could provide a new compound is worth exploring.”
Erin (Misty) Paig-Tran, Ph.D., who is from California State University, supplied the scientists with fish mucus from both bottom-dwelling and surface-dwelling fish off the coast of California.
The team chose to focus on younger fish because they tend to have thicker mucus layers. The extra mucus is necessary because their immune systems are relatively undeveloped, which means that they need additional protection.
The slime that was from the skin of Pacific pink perch worked particularly well against MRSA, and interestingly, it also showed strong activity against colon carcinoma cells.
For future studies, Austin has chosen to hone in on one specific species of bacteria that the team found on the Pacific pink perch — Pseudomonas aeruginosa. According to Austin, P. aeruginosa produces antibiotics that could be useful in the future.
For example, these bacteria produce interesting phenazines, which are a well-studiedTrusted Source group of compounds that have “broad-spectrum antibiotic properties.” Several bacterial species produce phenazines.
Aside from the pressing issue of antibiotic resistance, the scientists have other ideas about potential uses for fish slime. For instance, they think that fish mucus could help reduce the number of antibiotics that fish farms use. They believe that it would be possible to achieve this by designing antibiotics to target the microbes that are present in the mucus of specific fish.
“Now has a detailed scientific explanation on why his method of no quarantine works”.
Fish slime: An answer to antibiotic resistance?
Antibiotic resistance is an increasingly pressing issue for humanity. A recent study dives into the constituents of fish slime to hunt for new antibiotics.
www.medicalnewstoday.com
“Researchers from Oregon State University in Corvallis and California State University in Fullerton led the most recent foray into unexplored reservoirs of bacteria, concentrating their attention on the protective slime, or mucus, that coats fish.
The researchers recently presented their findings at the American Chemical Society Spring 2019 National Meeting & Exposition.”
Why fish slime?
This gloopy coating is of great use to fish because it traps and destroys pathogens in the environment, such as bacteria, fungi, and viruses. The slime contains novel polysaccharides and peptides, some of which have antibacterial activity.One of the researchers, Molly Austin, explains that fish mucus is particularly interesting because fish are in constant contact with a complex environment that is dense with potential microbial enemies.
As the authors write, “fish cohabitate with a multitude of bacteria and viruses but often resist deadly infections.” It is worth finding out whether fish’s protective mechanisms might also protect humans.
The marine environment remains relatively unstudied, according to the principal investigator Sandra Loesgen, Ph.D., “For us, any microbe in the marine environment that could provide a new compound is worth exploring.”
Erin (Misty) Paig-Tran, Ph.D., who is from California State University, supplied the scientists with fish mucus from both bottom-dwelling and surface-dwelling fish off the coast of California.
The team chose to focus on younger fish because they tend to have thicker mucus layers. The extra mucus is necessary because their immune systems are relatively undeveloped, which means that they need additional protection.
Mucus versus MRSA
In all, the researchers isolated 47 different strains of bacteria from the mucus. Of these, five were highly effective against methicillin-resistant Staphylococcus aureus (MRSA), and three were effective against Candida albicans, a fungus that is pathogenic to humans.The slime that was from the skin of Pacific pink perch worked particularly well against MRSA, and interestingly, it also showed strong activity against colon carcinoma cells.
For future studies, Austin has chosen to hone in on one specific species of bacteria that the team found on the Pacific pink perch — Pseudomonas aeruginosa. According to Austin, P. aeruginosa produces antibiotics that could be useful in the future.
For example, these bacteria produce interesting phenazines, which are a well-studiedTrusted Source group of compounds that have “broad-spectrum antibiotic properties.” Several bacterial species produce phenazines.
Aside from the pressing issue of antibiotic resistance, the scientists have other ideas about potential uses for fish slime. For instance, they think that fish mucus could help reduce the number of antibiotics that fish farms use. They believe that it would be possible to achieve this by designing antibiotics to target the microbes that are present in the mucus of specific fish.